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Numerical fluid models are widely used in gas discharge physics. A typical dis-
charge model comprises continuity equations and drift–diffusion equations for re-
active particle species, a balance equation for the electron energy, and Poisson’s
equation for the electric field. When this system of equations is integrated numeri-
cally with respect to time, the explicit evaluation of coupled quantities necessitates
strong time step restrictions, resulting in an enormous slowdown of the calculation.
The strongest time step restriction arises from an explicit treatment of the cou-
pling between the charged particle transport and the space charge field. In order to
circumvent this constraint several implicit and semi-implicit techniques have been
developed. When one uses these techniques, however, the explicit handling of the
dependence of electron energy source term on the electron mean energy becomes
limiting for the time step. In this work we present a technique for the implicit treat-
ment of the electron energy source term, based on linearization with respect to the
electron mean energy. This approach makes it possible to increase the time step by
several orders of magnitude, thus giving a tremendous speedup of the calculation.
Test results are provided for some typical cases, covering a wide range of numerical
conditions. c© 2000 Academic Press
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INTRODUCTION

Fluid models are widely used in all areas of plasma physics. For gas discharges, various
models have been developed in plasma groups all over the world, featuring models for the
microdischarges in display panels [1–3], model for RF plasma reactors for deposition or
etching [4–6], models for streamer discharges [7–9], and many more. All these models are
based on basically the same system of equations, which we will describe now.
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Electron and ion densities are calculated as a function of time and space from the first
few moments of the Boltzmann equation. For every speciesp, a continuity equation reads

∂np

∂t
+∇ · Γp = Sp, (1)

wherenp is the density,Γp is the flux, andSp is the source term. The flux is given by the
second moment of the Boltzmann equation, which is usually approximated by the drift–
diffusion equation

Γp = sgn(qp)µpEnp − Dp∇np. (2)

E is the electric field,qp is the particle charge,µp is the mobility, andDp is the diffusion
coefficient. The first term on the right-hand side gives the flux due to the electric field
(drift) and the second term represents the flux due to concentration gradients (diffusion).
The electric field is dependent on the space charge density according to Poisson’s equation

∇ · (εE) = ρ, (3)

whereε is the dielectric permittivity andρ is the space charge density:

ρ =
∑

p

qpnp. (4)

The particle source termSp results from the reactions occurring in the plasma. It consists
of positive contributions of the reactions in which a particle of speciesp is created and of
negative contributions of the reactions in which such a particle is lost:

Sp =
∑

r

Np,r Rr . (5)

The indexr refers to a reaction.Np,r is the net number of particles of speciesp created in
one reaction of typer , and it can be negative or positive. The reaction rateRr is proportional
to the densities of the reacting particles,

Rr = kr n1,r n2,r (6)

for two-body reactions and

Rr = kr n1,r n2,r n3,r (7)

for three-body reactions. The proportionality constantkr is called the reaction rate coeffi-
cient.

The transport equations (1)–(2) require the input of the transport coefficientsµ and
D and the reaction rate coefficientsk. In general these quantities depend on the energy
distribution of the considered particles. Several approximations have been done concerning
these dependencies. Early works [10, 11] used a local field approximation, which assumes
a direct relation between the particle energy distributions and the electric field. Transport
and rate coefficients are regarded as functions of the electric field:

µ = µ(E), D = D(E), k = k(E). (8)
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These relations can be found in the literature as results of classical theories and experimental
measurements. In many types of discharges, however, the local field approximation is not
justified for electrons, so that the use of relations (8) for coefficients concerning electrons
leads to unsatisfactory modeling results. More recent works [2, 4–6, 12] therefore assume
the electron transport coefficients and the rate coefficients of electron impact reactions to
be functions of the electron mean energy

µe = µe(ε̄), De = De(ε̄), k = k(ε̄), (9)

where the subscripte refers to electrons and the electron mean energy ¯ε is calculated as a
function of time and space from an energy balance equation,

∂nε
∂t
+∇ · Γε = Sε, (10)

wherenε is the electron energy density,

nε = neε̄, (11)

andΓε is the electron energy flux,

Γε = −5

3
µeEnε − 5

3
De∇nε. (12)

The electron energy source termSε is given by

Sε = −eΓe · E− ne

∑
r

εr kr nr . (13)

The two terms on the right-hand side represent the heating by the electric field and the energy
loss in collisions, respectively. The summation in the collisional loss term is only over the
electron impact reactions, withnr the density of the target particles andεr the threshold
energy. The functions (9) are calculated from cross sections, with additional assumptions
made for the electron energy distribution function. The electron diffusion coefficient is
usually found from the electron mobility by the Einstein relation:

De = 2µeε̄

3e
. (14)

The transport equations (1)–(2) for heavy particles are usually solved for the boundary
condition of zero particle influx. The boundary conditions for the transport of electrons
(1)–(2) and electron energy (10)–(13) include influx by secondary electron emission.

SOLUTION OF THE SYSTEM OF EQUATIONS

When solving this system of equations numerically, one has to deal with the couplings
between the different equations. We will demonstrate now how this is usually taken care of
in the discretization scheme for time integration. The words “explicit” and “implicit” will
turn out to be the key words in resolving the couplings in the system.
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Let superscripts refer to a moment in time, and let1t be a time step, withtk+1= tk+1t .
Assume that the values of all quantities are known at a timetk and are to be calculated
at time tk+1. The continuity equations for particles (1) and for electron energy (10) are
discretized in time as

nk+1
p − nk

p

1t
−∇ · Γl

p = Sm
p , (15)

wherel andm are the time indices pertinent to0 andS, respectively. The transport term and
the source term can be evaluated either at timetk(l =m= k) or at timetk+1 (l =m= k+ 1).
Evaluation at timetk is explicit, since all quantities attk are already known. This is com-
putationally attractive, but it can lead to fluctuations or even instabilities in the calculation,
unless restrictions are applied to the time step1t . Evaluation at timetk+1 must be im-
plicit, since no values are known yet. Implicit treatment does not lead to fluctuations or
instabilities, but it can be very hard to accomplish. Couplings between different equations
and nonlinearities can make implicit evaluations quite cumbersome or impossible. We now
write Eq. (15) more precisely,

nk+1
p − nk

p

1t
−∇ · Γp

(
nln

p,E
lE , µlµ

p , Dl D
p

) = Sp
(
nmn

1 , n
mn
2 , . . . , k

mk
1 , kmk

2 , . . .
)
, (16)

and discuss in detail the treatment of the different quantities appearing in the transport and
source terms of this equation:

• The density in the transport term is always handled implicitly,ln= k + 1, because
explicit treatment (ln= k) would lead to very severe time step restrictions due to a funda-
mental necessary condition for the convergence of difference methods, known as the CFL
condition [13, 14].
• The evaluation of the electric field in the transport term has drawn the attention of

many authors in the field for discharge modeling. If the electric field in the transport term
is treated explicitly (lE= k), as is done in conventional discharge models, the time step
condition [10]

1t <
ε0∑

p |qr |µpnp
(17)

must be applied in order to avoid numerical instabilities. The electric field attk+1 can then
be calculated straightforwardly after the calculation of the densities:

∇ · (εEk+1) =
∑

p

qpnk+1
p . (18)

The constraint (17) can be very prohibitive, especially for high plasma densities
(>109 cm−3). Implicit evaluation ofE (lE= k + 1) circumvents this time step restriction,
but is numerically unattractive, since it implies solving all the continuity equations (1) and
Poisson’s equation (3) at the same time. In 1-D models fully implicit techniques have been
successfully applied [15, 16], but for multidimensional problems these become too cum-
bersome. However, it can be shown that, in order to avoid restriction (17), a strictly implicit
evaluation ofE is not necessary: a so-called semi-implicit treatment [17–19] will also ensure
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stability. In this case, Poisson’s equation is solved before the continuity equations. Since
the space charge density at timetk+1 is not known yet, an estimate is used,

∇ · (εEk+1) =
∑

p

qpñk+1
p , (19)

where ñk+1
p is an estimate fornk+1

p , arising from the continuity equation (16) with
ln= lµ= l D =mn=mk= k and onlylE= k+ 1:

ñk+1
p = nk

p +1t∇ · Γp
(
nk

p,E
k+1, µk

p, Dk
p

)
. (20)

Note that the source termSp has been omitted, since it does not create any space charge: after
substitution in Eq. (19), all source terms would cancel. With this semi-implicit technique,
the time step can be several orders of magnitude larger than the time step given by constraint
(17), thus giving a tremendous speedup of the calculation.
• Transport coefficients and particle source terms are usually evaluated explicitly

(lµ= l D =mn=mk= k). Fully implicit treatment of all densities in the particle source
term (mn= k+ 1) is hardly feasible. Furthermore, implicit evaluation of transport and rate
coefficients (lµ= l D =mk= k+ 1) is problematic since they are arbitrary functions of the
electric field (8) or the electron mean energy (9), usually read from lookup tables.

IMPLICIT TREATMENT OF THE ELECTRON ENERGY SOURCE TERM

Using a (semi-)implicit treatment of the electric field in the drift–diffusion flux, we can
solve particle transport equations reasonably well. However, it turns out that the solution of
the electron energy balance equation becomes limiting for the time step. Small oscillations
in the solution of this equation are amplified and spread rapidly throughout the whole
system of equations due to the strong dependence of rate coefficients and electron diffusion
coefficient on the electron mean energy. A typical behavior is depicted in Fig. 1. It has

FIG. 1. Oscillations in the electron mean energy at one position in a simulation of a DC microdischarge, for
different values of the time step1t .
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been stated previously that this problem can be avoided by evaluating the source term for
electron energy implicitly, rather than applying the conventional explicit treatment. For
example, Ref. [19] reports a semi-implicit treatment of the inelastic energy losses, albeit
for a different type of energy equation. In this work we present an implicit technique for the
entire source term (13) of the electron energy equation (10), that is, including the electron
heating term.

The electron energy source term has a form different from that of the particle source terms:

Sε = −eEmE · Γe
(
nmn

e ,E
mE , µmµ

e , DmD
e

)− nmn
e

∑
r

εr k
mk
r nmn

r . (21)

In this source term the electric field and the electron density can be taken at timetk without
any problem (mE=mn= k), but an explicit evaluation of the electron mobility, electron dif-
fusion coefficient, and especially the reaction rate coefficients (mε =mµ=mD =mk= k)
can easily cause and amplify fluctuations. We will show now how these quantities can be
evaluated implicitly (mε =mµ=mD =mk= k+ 1). First, we linearize the energy source
term with respect to the electron mobility, electron diffusion coefficient, and rate constants:

Sε = −eEk · Γk
e − nk

e

∑
r

εr k
k
r nk

r − eEk ·
(
∂Γe

∂µe

)k (
µk+1

e − µk
e

)
− eEk ·

(
∂Γe

∂De

)k (
Dk+1

e − Dk
e

)− nk
e

∑
r

εr
(
kk+1

r − kk
r

)
nk

r . (22)

Then, we linearize the dependencies of these quantities on the electron mean energy,

µk+1
e = µk

e +
(
∂µe

∂ε̄

)k (
ε̄k+1− ε̄k

)
, (23)

and analogous expressions forDk+1
e andkk+1

r . Finally, we use

ε̄k+1 = ε̄k +
(
∂ε̄

∂nε

)k (
nk+1
ε − nk

ε

)+ ( ∂ε̄
∂ne

)k (
nk+1

e − nk
e

)
= ε̄k + 1

nk
e

(
nk+1
ε − nk

ε

)− nk
ε(

nk
e

)2

(
nk+1

e − nk
e

)
= ε̄k + 1

nk
e

(
nk+1
ε − nk+1

e ε̄k
)
. (24)

Substitution of these expressions into Eq. (22) yields

Sε = −eEk · Γk
e − nk

e

∑
r

εr k
k
r nk

r −
[

e

nk
e

Ek ·
(
∂Γe

∂µe

)k(
∂µe

∂ε̄

)k

+ e

nk
e

Ek ·
(
∂Γe

∂De

)k(
∂De

∂ε̄

)k

+
∑

r

εr

(
∂kr

∂ε̄

)k

nk
r

](
nk+1
ε − nk+1

e ε̄k
)
. (25)

The last term on the right provides an implicit correction of the energy source term for
changes in the electron mean energy, which prevents oscillations in the solution of the
energy equation. Possible time step restrictions arising from the truncation errors in the
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linearizations (22)–(24) are usually not severe, since the transport and rate coefficients are
smooth functions of the electron mean energy. Notice that it is essential for this approach
that the continuity equation for electrons be solved before solving the energy equation, so
thatnk+1

e is known.
Combining this technique with the semi-implicit treatment of the electric field discussed

in the previous section, we end up with the following scheme:

• First Ek+1 is solved from

∇ · (εE)k+1 =
∑

p

qp
(
nk

p +1t∇ · Γp
(
nk

p,E
k+1, µk

p, Dk
p

))
. (26)

• Then for every speciesp the densitynk+1
p is solved from

nk+1
p − nk

p

1t
−∇ · Γp

(
nk+1

p ,Ek+1, µk
p, Dk

p

) = Sk
p. (27)

• Finally, nk+1
ε is calculated from

nk+1
ε − nk

ε

1t
−∇ · Γε

(
nk+1
ε ,Ek+1, µk

e, Dk
e

)
= Sk

ε −
[

e

ne
E ·
(
∂Γe

∂µe

∂µe

∂ε̄
+ ∂Γe

∂De

∂De

∂ε̄

)
+
∑

r

εr

(
∂kr

∂ε̄

)
nr

]k(
nk+1
ε − nk+1

e ε̄k
)
. (28)

SPATIAL DISCRETIZATION

The numerical solution of Eqs. (26)–(28) requires an appropriate spatial discretization. In
order to ensure a proper functioning of the semi-implicit method for the electric field and the
implicit correction of the electron energy source term, the spatial discretization schemes for
the different equations (26)–(28) must be consistent with one another. The crucial quantity
is the drift–diffusion flux: in each of the equations it should be discretized likewise. We
will show how this is done for problems in one spatial dimension. Let subscripts refer to a
position in space, and let1x be a spatial interval, withxi+1= xi +1x.

The drift–diffusion flux in the transport term of the continuity equations (27) and (28)
is usually [4–6, 11, 16] discretized according to the exponential scheme of Sharfetter and
Gummel [20]. This scheme supports large density gradients, as opposed to the more straight-
forward central difference scheme. It is based on the analytical solution for a constant
drift–diffusion flux between two grid points. In one spatial dimension it reads

0i+1/2 = − 1

1x
Di+1/2( f1(zi+1/2)ni+1− f2(zi+1/2)ni ), (29)

wherezi+1/2 is given by

zi+1/2 = sgn(q)µi+1/2Ei+1/21x

Di+1/2
, (30)

and the functionsf1(z) and f2(z) are defined as

f1(z) = z

exp(z)− 1
, (31)

f2(z) = zexp(z)

exp(z)− 1
. (32)
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The exponential scheme (29) should now also be applied to the fluxes in the semi-implicit
version of Poisson’s equation and in the implicit correction of the electron heating.

For the fluxes in Poisson’s equation (26), however, this scheme is not very convenient,
because it has the electric field appearing within exponential functions, which makes it hard
to solve for it. This problem is usually straightforwardly circumvented by using the central
difference scheme in this case, which is linear in the electric field:

0i+1/2 =
[
sgn(q)µi+1/2

1

2
(ni+1+ ni )

]k

Ek+1
i+1/2−

[
Di+1/2

ni+1− ni

1x

]k

. (33)

However, we found it to be more numerically consistent to stick to the exponential scheme
and linearize this intk,

0i+1/2 = [sgn(q)µi+1/2(g1(zi+1/2)ni+1− g2(zi+1/2)ni )]
k Ek+1

i+1/2

−
[

Di+1/2h(zi+1/2)
ni+1− ni

1x

]k

, (34)

where the functionsg1(z), g2(z), andh(z) are defined as

g1(z) = ∂ f1(z)

∂z
= (1− z) exp(z)− 1

(exp(z)− 1)2
, (35)

g2(z) = ∂ f2(z)

∂z
= exp(z)

exp(z)− (1+ z)

(exp(z)− 1)2
, (36)

h(z) = f1(z)− g1(z)z= f2(z)− g2(z)z= z2 exp(z)

(exp(z)− 1)2
. (37)

The use of expression (34) for the fluxes in the semi-implicit Poisson equation gives better
results than the central difference scheme (33), as will be shown in the next section.

Applying the exponential scheme to the electron flux in the electron energy source term
and using the Einstein relation (14) yields the following expression for the implicit electron
heating correction,(

∂0e

∂µe

∂µe

∂ε̄
+ ∂0e

∂De

∂De

∂ε̄

)
i+1/2

= − 2

3e1x
µe,i+1/2h(zi+1/2)(ne,i+1− ne,i )

+ 1

µe,i+1/2

(
∂µe

∂ε̄

)
i+1/2

0e,i+1/2, j , (38)

which contains once again the functionh(z) given by (37).

TESTING THE IMPLICIT SCHEME

The time integration scheme (26)–(28), which combines the semi-implicit technique for
the electric field and the implicit treatment of the electron energy source term, has been
extensively tested in 2-D simulations of the microdischarges used in plasma-addressed liquid
crystal display panels. In this section we will discuss some typical cases. Figure 2 shows
a typical microdischarge geometry, this configuration was used for the test calculations
discussed here.
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FIG. 2. Two-dimensional microdischarge geometry used in test calculations.

First we considered the simulation of the ignition of a DC discharge, which is one of the
most transient phenomena in glow discharges. In this case the behavior of the plasma is
governed by ionization processes and the development of extremely high space charge fields.
Under these conditions an explicit evaluation of the electron energy source term turned out
to result in strong fluctuations in the electron mean energy for1t > 10−10 s. Applying the
implicit treatment to the electron energy source term made it possible to use time steps up to
1t = 10−8 s, without any significant influence on the calculation results. For larger time step
values, errors in the calculation results could be observed, although even then the calculation
remained stable. All calculations yielded exactly the same steady state results, regardless
of time step or integration method. Using the implicit method only slightly increased the
computational effort per iteration, so that the speedup gained by the increased time step
was tremendous. These calculations are represented in Fig. 3, which shows the calculated
development of the space averaged electron density for different time steps. Figure 4 shows
similar curves for the simulation of the afterglow, i.e., the decay of the plasma after the DC
voltage over the electrodes has been switched off. The plasma conditions are completely
different now: the electric fields and the electron mean energy decrease rapidly, and the

FIG. 3. Space-averaged electron density in the simulation of the development of a DC microdischarge, for
different time steps and different treatments of the electron energy source term. Time steps larger than 10−10 s
were impossible using an explicit energy source term evaluation. The simulated discharge configuration is shown
in Fig. 2.
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FIG. 4. Space-averaged electron density in the simulation of the afterglow of a microdischarge, for different
time steps and different treatments of the electron energy source term. The simulated discharge configuration is
shown in Fig. 2.

behavior of the plasma becomes dominated by ambipolar diffusion. Initially the plasma
density rises, due to a sudden absence of drift losses while production is still present; then it
slowly decreases. Explicit evaluation of the electron energy source term was possible up to
1t = 10−9 s, but led to large inaccuracies for1t > 10−10 s. Once again implicit evaluation
gave good results for1t = 10−8 s. The implicit correction of the electron heating part of
the energy source term turned out to be essential for these afterglow conditions.

When one uses the large time steps of up to1t = 10−8 s, however, the semi-implicit
technique for the electric field tends to produce errors if the fluxes in Poisson’s equation (25)

FIG. 5. Space-averaged electron density in the simulation of the afterglow of a microdischarge. The simulated
discharge configuration is shown in Fig. 2. The figure compares the performances of two spatial discretization
schemes for the fluxes in the semi-implicit Poisson equation (26), the central difference scheme (33), and the
linearized exponential scheme (34), for different time steps. In all calculations the electron energy source term
was handled implicitly.
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TABLE I

Comparison between Test Results of Different Time Integration Schemes

Treatment of Treatment of electron Typical maximum Typical CPU
electric field energy source term time step time ratio

Explicit Explicit 10−11 s, Eq. (17) 1
Implicit Explicit 10−10 s 1.5× 10−1

Implicit Implicit 10−8 s 2.0× 10−3

are spatially discretized according to the central difference method (32). We found that the
problem can be avoided by applying the linearized exponential scheme (33) instead. As an
example, Fig. 5 compares both spatial discretization schemes for the afterglow simulation,
where the effect is most apparent. In all calculations the same uniform Cartesian grid
was used. The grid size was appropriate for the exponential scheme; that is, further grid
refinement hardly changed the results obtained with this scheme. The central difference
scheme obviously requires a finer grid. We did not see the effect in steady state calculations:
both discretization methods led to virtually the same steady state results, even for very large
time steps.

The test results are summarized in Table I. Since the test problems cover a wide range of
numerical conditions, similar results can be expected for discharge simulations in general,
e.g., for RF discharge modeling.

CONCLUSIONS

If the coupling between charged particle transport and space charge field is treated implic-
itly or semi-implicitly, the time step in numerical fluid models for gas discharges becomes
restricted by the explicit evaluation of the source term in the balance equation for electron
energy. In this work we have presented an implicit technique for the energy source term,
which overcomes these restrictions. For test calculations on microdischarges this implicit
treatment made it possible to increase the time step by two orders of magnitude, resulting
in a speedup of the calculation by almost the same factor. Since the test problems cover a
wide range of numerical conditions, generalization of these results seems possible.

In addition we have shown that the semi-implicit method for the electric field can lead
to large inaccuracies if a central difference scheme is used for the spatial discretization of
the particle fluxes in Poisson’s equation. These numerical errors can be greatly reduced by
applying a linearized exponential scheme instead.
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