Journal of Computational Physi¢§9,1-12 (2000)

®
doi:10.1006/jcph.2000.6445, available online at http://www.idealibrary.col DE &l. v

Speeding Up Fluid Models for Gas Discharges
by Implicit Treatment of the Electron
Energy Source Term

G. J. M. Hageladrand G. M. W. Kroesen

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: *hagelaar@discharge.phys.tue.nl

Received April 22, 1999; revised October 7, 1999

Numerical fluid models are widely used in gas discharge physics. A typical dis-
charge model comprises continuity equations and drift—diffusion equations for re-
active particle species, a balance equation for the electron energy, and Poisson’s
equation for the electric field. When this system of equations is integrated numeri-
cally with respect to time, the explicit evaluation of coupled quantities necessitates
strong time step restrictions, resulting in an enormous slowdown of the calculation.
The strongest time step restriction arises from an explicit treatment of the cou-
pling between the charged particle transport and the space charge field. In order to
circumvent this constraint several implicit and semi-implicit techniques have been
developed. When one uses these techniques, however, the explicit handling of the
dependence of electron energy source term on the electron mean energy becomes
limiting for the time step. In this work we present a technique for the implicit treat-
ment of the electron energy source term, based on linearization with respect to the
electron mean energy. This approach makes it possible to increase the time step by
several orders of magnitude, thus giving a tremendous speedup of the calculation.
Test results are provided for some typical cases, covering a wide range of numerical
conditions. @ 2000 Academic Press
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INTRODUCTION

Fluid models are widely used in all areas of plasma physics. For gas discharges, va
models have been developed in plasma groups all over the world, featuring models fo
microdischarges in display panels [1-3], model for RF plasma reactors for depositiol
etching [4—6], models for streamer discharges [7-9], and many more. All these model:
based on basically the same system of equations, which we will describe now.
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Electron and ion densities are calculated as a function of time and space from the
few moments of the Boltzmann equation. For every spegjescontinuity equation reads
an
7’3 + V. Fp == Spa (1)
ot
wheren,, is the density]', is the flux, andS,; is the source term. The flux is given by the
second moment of the Boltzmann equation, which is usually approximated by the dr
diffusion equation

I'p = sgnap)upEny — DpVnp. 2)

E is the electric fieldqp is the particle chargey, is the mobility, andD, is the diffusion

coefficient. The first term on the right-hand side gives the flux due to the electric fit
(drift) and the second term represents the flux due to concentration gradients (diffusi
The electric field is dependent on the space charge density according to Poisson’s equ

V.- (¢E) = p, 3)

wheree is the dielectric permittivity ang is the space charge density:
p= Z QpNp. 4)
P

The particle source teri8, results from the reactions occurring in the plasma. It consis
of positive contributions of the reactions in which a particle of spepiescreated and of
negative contributions of the reactions in which such a particle is lost:

Sp:ZNp,I’R'(~ (5)

The indexr refers to a reactiorNp is the net number of particles of specigsreated in
one reaction of type, and it can be negative or positive. The reaction Ratis proportional
to the densities of the reacting particles,

Rr = krnl,rnz,r (6)
for two-body reactions and
Rr = kr Ny1rN2 N3¢ (7)

for three-body reactions. The proportionality constanis called the reaction rate coeffi-
cient.

The transport equations (1)—(2) require the input of the transport coeffigieatsd
D and the reaction rate coefficierits In general these quantities depend on the energ
distribution of the considered particles. Several approximations have been done concel
these dependencies. Early works [10, 11] used a local field approximation, which asstL
a direct relation between the particle energy distributions and the electric field. Trans
and rate coefficients are regarded as functions of the electric field:

n=wn(E), D=DE), k=k(E). 8
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These relations can be found in the literature as results of classical theories and experirr
measurements. In many types of discharges, however, the local field approximation i
justified for electrons, so that the use of relations (8) for coefficients concerning electr
leads to unsatisfactory modeling results. More recent works [2, 4—6, 12] therefore ass
the electron transport coefficients and the rate coefficients of electron impact reactior
be functions of the electron mean energy

e = Ue(€), De = De(e), k =k(e), 9

where the subscrig refers to electrons and the electron mean enerngycalculated as a
function of time and space from an energy balance equation,

an,
ot

+V.T. =85, (10)
wheren, is the electron energy density,
N, = Nes, (11)

andT; is the electron energy flux,

5 5
FS = —:—))//LeEns — :—))Devns. (12)

The electron energy source te@nis given by

S=—ele-E—ned k. (13)

The two terms on the right-hand side represent the heating by the electric field and the er
loss in collisions, respectively. The summation in the collisional loss term is only over
electron impact reactions, with the density of the target particles andthe threshold
energy. The functions (9) are calculated from cross sections, with additional assumpit
made for the electron energy distribution function. The electron diffusion coefficient
usually found from the electron mobility by the Einstein relation:

2UeE
De = .
°T 3e

(14)

The transport equations (1)—(2) for heavy particles are usually solved for the bounc
condition of zero particle influx. The boundary conditions for the transport of electro
(1)-(2) and electron energy (10)—(13) include influx by secondary electron emission.

SOLUTION OF THE SYSTEM OF EQUATIONS

When solving this system of equations numerically, one has to deal with the coupli
between the different equations. We will demonstrate now how this is usually taken car
in the discretization scheme for time integration. The words “explicit” and “implicit” wil
turn out to be the key words in resolving the couplings in the system.
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Let superscripts refer to a moment in time, anddébe a time step, with** =tk + At.
Assume that the values of all quantities are known at a tifrend are to be calculated
at timet*+1, The continuity equations for particles (1) and for electron energy (10) a
discretized in time as

ni;rl — nIE I
T—V-Fp=$, (15)

wherel andm are the time indices pertinentkbandS, respectively. The transport term and
the source term can be evaluated either at tifle= m = k) or at timet“t1 | = m=k + 1).
Evaluation at time is explicit, since all quantities af are already known. This is com-
putationally attractive, but it can lead to fluctuations or even instabilities in the calculati
unless restrictions are applied to the time stefp Evaluation at time*** must be im-
plicit, since no values are known yet. Implicit treatment does not lead to fluctuations
instabilities, but it can be very hard to accomplish. Couplings between different equati
and nonlinearities can make implicit evaluations quite cumbersome or impossible. We |
write Eq. (15) more precisely,

k1 _ Ak
My My

N — V. Tp(nls, E, ply, DIP) = Sp(nf". ng", ... k™. K3*,...),  (16)

and discuss in detail the treatment of the different quantities appearing in the transport
source terms of this equation:

e The density in the transport term is always handled implidiflys k + 1, because
explicit treatmentlg = k) would lead to very severe time step restrictions due to a fund
mental necessary condition for the convergence of difference methods, known as the
condition [13, 14].

e The evaluation of the electric field in the transport term has drawn the attention
many authors in the field for discharge modeling. If the electric field in the transport te
is treated explicitly Ig =Kk), as is done in conventional discharge models, the time st
condition [10]

€0

At < ————— 17
Zp|Qr|Mpnp ()

must be applied in order to avoid numerical instabilities. The electric fielff&can then
be calculated straightforwardly after the calculation of the densities:

V(BT = " qpnktt. (18)
p

The constraint (17) can be very prohibitive, especially for high plasma densit
(>10° cm3). Implicit evaluation ofE (Ie =k + 1) circumvents this time step restriction,

but is numerically unattractive, since it implies solving all the continuity equations (1) a
Poisson’s equation (3) at the same time. In 1-D models fully implicit techniques have b
successfully applied [15, 16], but for multidimensional problems these become too cl
bersome. However, it can be shown that, in order to avoid restriction (17), a strictly impl
evaluation ok is not necessary: a so-called semi-implicit treatment [17—-19] will also enst
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stability. In this case, Poisson’s equation is solved before the continuity equations. S
the space charge density at tif&! is not known yet, an estimate is used,

V(B = gkt (19)
P

where ﬁ';*l is an estimate fom';*l, arising from the continuity equation (16) with
lh=I,=lp=my=my=kand onlylg =k + 1:

skl _ ok kK kil k Rk
AgT =Nl + AtV - Tp(ng, E“, uf, DY). (20)

Note that the source terBy has been omitted, since it does not create any space charge:
substitution in Eq. (19), all source terms would cancel. With this semi-implicit techniqt
the time step can be several orders of magnitude larger than the time step given by cons
(17), thus giving a tremendous speedup of the calculation.

e Transport coefficients and particle source terms are usually evaluated explic
(I, =lp =my=m¢=Kk). Fully implicit treatment of all densities in the particle source
term (m, =k + 1) is hardly feasible. Furthermore, implicit evaluation of transport and ra
coefficients , =1p =my =k + 1) is problematic since they are arbitrary functions of the
electric field (8) or the electron mean energy (9), usually read from lookup tables.

IMPLICIT TREATMENT OF THE ELECTRON ENERGY SOURCE TERM

Using a (semi-)implicit treatment of the electric field in the drift—diffusion flux, we ca
solve particle transport equations reasonably well. However, it turns out that the solutio
the electron energy balance equation becomes limiting for the time step. Small oscillat
in the solution of this equation are amplified and spread rapidly throughout the wh
system of equations due to the strong dependence of rate coefficients and electron diff
coefficient on the electron mean energy. A typical behavior is depicted in Fig. 1. It |

5 -

electron mean energy (eV)

[ —o— At =5x10""s —m— At = 1x10™% —a— At = 2x10™"% |
A L n 1L L

4
4.00x107 4.01x107 4.02x107 4.03x107

time (s)

FIG. 1. Oscillations in the electron mean energy at one position in a simulation of a DC microdischarge,
different values of the time steft.
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been stated previously that this problem can be avoided by evaluating the source terr
electron energy implicitly, rather than applying the conventional explicit treatment. F
example, Ref. [19] reports a semi-implicit treatment of the inelastic energy losses, al
for a different type of energy equation. In this work we present an implicit technique for t
entire source term (13) of the electron energy equation (10), that is, including the elec
heating term.

The electron energy source term has a form different from that of the particle source tel

S = —eE™ - T(nd", E™, ud*, DI®) — i Y e k™n™. (21)

r

In this source term the electric field and the electron density can be taken af tiviteout
any problemihg = m, =K), but an explicit evaluation of the electron mobility, electron dif-
fusion coefficient, and especially the reaction rate coefficieants{(m, = mp =m, =k)
can easily cause and amplify fluctuations. We will show now how these quantities car
evaluated implicitly (n, =m, = mp =my =k + 1). First, we linearize the energy source
term with respect to the electron mobility, electron diffusion coefficient, and rate constal

9T\
S = —eE" - T§—nk> akink —eE*- (3—M:> (ns™ — 1)
r

k
—eEX. (%) (D = DE) 0k S g (KEFL = Kk, (22)
€ r

Then, we linearize the dependencies of these quantities on the electron mean energy,
I K
e
pst = ns+ (85) (8t — &), (23)

and analogous expressions @f+* andk**1. Finally, we use

—\ k —\ k
ot () e+ () (k-

an, dNe
T e (kL — k)
n{; e (n'é)z e e
= B (T ), (24)
e

Substitution of these expressions into Eq. (22) yields
& eEk I‘k nk Z krk K e Ek 8re k aue k
= — . - & — | — . JEE— —
¢ eL T | nk e de

e aTe\ ¥/ 9De\ ¥ ok, \ X
7Ek . e _e _ nk nk+l _ nk+l_k ) 25
"k (aDe> <ae) +ZE’<86> (| (e - et (@9)

The last term on the right provides an implicit correction of the energy source term
changes in the electron mean energy, which prevents oscillations in the solution of
energy equation. Possible time step restrictions arising from the truncation errors in
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linearizations (22)—(24) are usually not severe, since the transport and rate coefficient
smooth functions of the electron mean energy. Notice that it is essential for this apprc
that the continuity equation for electrons be solved before solving the energy equatior
thatnk** is known.

Combining this technigue with the semi-implicit treatment of the electric field discuss
in the previous section, we end up with the following scheme:

e FirstE*t1 s solved from

V- (eE)t =) "qp(nf + AtV - T (nf, EE, 1K, DY)). (26)
p

e Then for every specieg the densit)n‘;)+1 is solved from

nlﬁl_nﬁ k+l pk+l |k pk
+ +
0 - Vo Te(ng B g D) = S (27)

e Finally, n**1 is calculated from

k+1 k
n8+ — né‘ -v.T (nk+l Ek+l /vl/k Dk)
At & & ’ » e e

e e 0 aT'e 0D ok, k
— S E. e_rre ef—e " n Nkt pktigky o og
: Ne e 0€ + 0De 0¢ +Z€r o ) ( e e 8) (28)

SPATIAL DISCRETIZATION

The numerical solution of Egs. (26)—(28) requires an appropriate spatial discretizatior
order to ensure a proper functioning of the semi-implicit method for the electric field and
implicit correction of the electron energy source term, the spatial discretization scheme:
the different equations (26)—(28) must be consistent with one another. The crucial qua
is the drift—diffusion flux: in each of the equations it should be discretized likewise. \
will show how this is done for problems in one spatial dimension. Let subscripts refer t
position in space, and letx be a spatial interval, with; ;1 = X + AX.

The drift—diffusion flux in the transport term of the continuity equations (27) and (2
is usually [4—6, 11, 16] discretized according to the exponential scheme of Sharfetter
Gummel [20]. This scheme supports large density gradients, as opposed to the more str:
forward central difference scheme. It is based on the analytical solution for a cons
drift—diffusion flux between two grid points. In one spatial dimension it reads

1
Fij12 = N Diy1/2(f1(Zi 112011 — f2(Zi112)M), (29)

wherez;_1, is given by

sgnq) wi E; AX

2y = S, (30)

and the functiond(z) and f,(z) are defined as

z
f = — 31
12 exp) —1' (31)

zexp(z

() = 2R (32)

Cexpz) -1
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The exponential scheme (29) should now also be applied to the fluxes in the semi-imp
version of Poisson’s equation and in the implicit correction of the electron heating.

For the fluxes in Poisson’s equation (26), however, this scheme is not very conveni
because it has the electric field appearing within exponential functions, which makesi it t
to solve for it. This problem is usually straightforwardly circumvented by using the cent
difference scheme in this case, which is linear in the electric field:

1 k Nit1 — N k

Fij12 = [SQF(Q)M +1/2§(ni 1+ N )} Eik-:rll/Z - |:Di+1/2%:| (33)

However, we found it to be more numerically consistent to stick to the exponential sche
and linearize this in¥,

Tis1/2 =[SO i+1/2(01(Zi41/2)Ni11 — Go(Zi+12)MD]FEN L,

- |:Di+1/2h(zi+1/2)%] , (34)
where the functiong:(2), 92(2), andh(z) are defined as
_ i@ (1-27z)expiz2) -1
W@ = T e 12 (35)
_0f(2 expiz) — (142
Q) = = = XD (36)
B B _ Zexp2)
h(2) = 11(2) — 0w @z2= 1202 — R@)z= (expz) — 172 (37)

The use of expression (34) for the fluxes in the semi-implicit Poisson equation gives be
results than the central difference scheme (33), as will be shown in the next section.

Applying the exponential scheme to the electron flux in the electron energy source t
and using the Einstein relation (14) yields the following expression for the implicit electr
heating correction,

0le 0ue 0Te dDg 2
<8Me Py + 9D, 95 e 3eAXl/«e,|+1/2 (Zi41/2)(Neji+1 ei)
1 0
<M—e) Ceit1/2, (38)
Mei+1/2 \ ¢ i+1/2

which contains once again the functib(e) given by (37).

TESTING THE IMPLICIT SCHEME

The time integration scheme (26)—(28), which combines the semi-implicit technique
the electric field and the implicit treatment of the electron energy source term, has b
extensively tested in 2-D simulations of the microdischarges used in plasma-addressed |
crystal display panels. In this section we will discuss some typical cases. Figure 2 sh
a typical microdischarge geometry, this configuration was used for the test calculati
discussed here.
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dielectric surroundings

discharge channel
150 Torr helium gas

cathode —-300 V anode O V
100 pm

FIG. 2. Two-dimensional microdischarge geometry used in test calculations.

First we considered the simulation of the ignition of a DC discharge, which is one of
most transient phenomena in glow discharges. In this case the behavior of the plasr
governed by ionization processes and the development of extremely high space charge
Under these conditions an explicit evaluation of the electron energy source term turnec
to result in strong fluctuations in the electron mean energytos 1071°s. Applying the
implicit treatment to the electron energy source term made it possible to use time steps
At =10%s, without any significant influence on the calculation results. For larger time s
values, errors in the calculation results could be observed, although even then the calcul
remained stable. All calculations yielded exactly the same steady state results, regar
of time step or integration method. Using the implicit method only slightly increased t
computational effort per iteration, so that the speedup gained by the increased time
was tremendous. These calculations are represented in Fig. 3, which shows the calct
development of the space averaged electron density for different time steps. Figure 4 s
similar curves for the simulation of the afterglow, i.e., the decay of the plasma after the
voltage over the electrodes has been switched off. The plasma conditions are compl
different now: the electric fields and the electron mean energy decrease rapidly, anc

6.0x10" T T J T T T 7 T
implicit At=2x10"s
g 4.0x10"'f 7
2
@ explicit At=8x10""s
[h}
© implicit At=1x10"%s
S 200" implicit At=5x10"s i
ks
°® implicit At=1x10"s
0.0 L ' . L
0 2 4 6 8 10

time (us)

FIG. 3. Space-averaged electron density in the simulation of the development of a DC microdischarge
different time steps and different treatments of the electron energy source term. Time steps larger‘han 1
were impossible using an explicit energy source term evaluation. The simulated discharge configuration is s
in Fig. 2.
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8.0x10" —————7——— —r—

explicit At=1x10"’s

implicit At=1x10"°s

G~ e.0ox1o" .
£ implicit At=1x10"%s
Fy implicit At=2x10"s
2 40xi0" .
()]
©
c
o
&  2.0x10"
©
explicit At=1x10"s
oo L o 0L .
10 15 20 25
time (us)

FIG. 4. Space-averaged electron density in the simulation of the afterglow of a microdischarge, for differ

time steps and different treatments of the electron energy source term. The simulated discharge configura
shown in Fig. 2.

behavior of the plasma becomes dominated by ambipolar diffusion. Initially the plas
density rises, due to a sudden absence of drift losses while production is still present; th
slowly decreases. Explicit evaluation of the electron energy source term was possible
At =10"7s, but led to large inaccuracies fat > 10-1°s. Once again implicit evaluation
gave good results foAt = 10-8s. The implicit correction of the electron heating part of
the energy source term turned out to be essential for these afterglow conditions.
When one uses the large time steps of upAto=10-8s, however, the semi-implicit
technique for the electric field tends to produce errors if the fluxes in Poisson’s equation

1.0x10" central difference At=10"s

central difference At=10"s

central difference At=10""s

exponential At=10"%s
5.0x10"

electron density (cm™)

exponential At=10"s

0.0 — e
10 15 20 25

time (us)

FIG.5. Space-averaged electron density in the simulation of the afterglow of a microdischarge. The simul
discharge configuration is shown in Fig. 2. The figure compares the performances of two spatial discretiz:
schemes for the fluxes in the semi-implicit Poisson equation (26), the central difference scheme (33), an
linearized exponential scheme (34), for different time steps. In all calculations the electron energy source
was handled implicitly.
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TABLE |
Comparison between Test Results of Different Time Integration Schemes

Treatment of Treatment of electron Typical maximum Typical CPU
electric field energy source term time step time ratio
Explicit Explicit 10s, Eq. (17) 1
Implicit Explicit 10%s 15x 101
Implicit Implicit 10%s 20x 1072

are spatially discretized according to the central difference method (32). We found tha
problem can be avoided by applying the linearized exponential scheme (33) instead. A
example, Fig. 5 compares both spatial discretization schemes for the afterglow simula
where the effect is most apparent. In all calculations the same uniform Cartesian
was used. The grid size was appropriate for the exponential scheme; that is, further
refinement hardly changed the results obtained with this scheme. The central differe
scheme obviously requires afiner grid. We did not see the effect in steady state calculat
both discretization methods led to virtually the same steady state results, even for very |
time steps.

The test results are summarized in Table I. Since the test problems cover a wide ran
numerical conditions, similar results can be expected for discharge simulations in gen
e.g., for RF discharge modeling.

CONCLUSIONS

If the coupling between charged particle transport and space charge field is treated im
itly or semi-implicitly, the time step in numerical fluid models for gas discharges becon
restricted by the explicit evaluation of the source term in the balance equation for elec
energy. In this work we have presented an implicit technique for the energy source te
which overcomes these restrictions. For test calculations on microdischarges this imy
treatment made it possible to increase the time step by two orders of magnitude, rest
in a speedup of the calculation by almost the same factor. Since the test problems co
wide range of numerical conditions, generalization of these results seems possible.

In addition we have shown that the semi-implicit method for the electric field can le
to large inaccuracies if a central difference scheme is used for the spatial discretizatic
the particle fluxes in Poisson’s equation. These numerical errors can be greatly reduce
applying a linearized exponential scheme instead.
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